
General Technical Specification, version 2.0

4/4 2013 Page 1 of 45

General Technical Specification for LSS for

NemID

Table of contents

1 Changes in version 2.0 .. 4

2 Introduction ... 5

3 Solution architecture ... 6
3.1 LSS Client integration ... 6
3.2 Third-party cookies ... 7
3.3 LSS Client URL ... 8
3.3.1 LSS Client iframe attributes ... 9
3.3.2 Hybrid app integration .. 10

4 Logon and signing flow .. 11
4.1 Communication API .. 12
4.2 Initialization error handling .. 13

5 Implementation .. 16
5.1 Supported platforms ... 16
5.2 Web Messaging API .. 16
5.3 Initialization ... 17
5.4 Message handling ... 19
5.5 Sending messages .. 20
5.6 Message authentication ... 22
5.7 Service provider implementation .. 23
5.8 LSS implementation .. 25
5.9 LSS Client presentation to user .. 27

6 API specification ... 28
6.1 The LssClientReady command .. 28
6.1.1 API_VERSION .. 29
6.1.2 LSS_SUPPLIER_ID .. 29
6.1.3 LSS_INSTALLATION_ID ... 29
6.1.4 LSS_VERSION .. 29
6.1.5 PDF_SUPPORTED ... 30
6.2 The BeginFlow command ... 30
6.2.1 CLIENTFLOW ... 31

General Technical Specification, version 2.0

4/4 2013 Page 2 of 45

6.2.2 ORIGIN ... 31
6.2.3 ADDITIONAL_PARAMS .. 32
6.2.4 ADDITIONAL_PARAMS_CRITICAL ... 32
6.2.5 LANGUAGE .. 33
6.2.6 TIMESTAMP ... 33
6.2.7 REQUESTISSUER .. 33
6.2.8 SIGN_PROPERTIES ... 34
6.2.9 SIGNTEXT ... 34
6.2.10 SIGNTEXT_FORMAT .. 34
6.2.11 SIGNTEXT_MONOSPACEFONT .. 34
6.2.12 SIGNTEXT_TRANSFORMATION ... 35
6.2.13 SIGNTEXT_TRANSFORMATION_ID 35
6.2.14 SP_CERT ... 35
6.2.15 PARAMS_DIGEST .. 35
6.2.16 DIGEST_SIGNATURE ... 35
6.3 The ReceiveResult command .. 36
6.3.1 STATUS... 36
6.3.2 STATUS_TEXT .. 36
6.3.3 SIGNATURE ... 36

7 Parameter validation ... 37
7.1 Parameter signature ... 37
7.2 Parameter normalization ... 38

8 Signing PDF documents ... 39

9 Status codes .. 40
9.1 General status codes ... 40
9.2 Signing status codes ... 40
9.3 LSS specific status codes ... 41
9.4 Status code handling .. 41

10 Issuing certificates .. 43

11 Recommended security reading .. 44

12 References .. 45

General Technical Specification, version 2.0

4/4 2013 Page 3 of 45

Version history

December 22th,

2016

Version 2.0 TSS

August 31, 2016 Version 1.5 JGB

October 30, 2014 Version 1.4 JGB

September 26, 2014 Version 1.3 TSS

August 12, 2014 Version 1.2 TSS

4th April 2014 Version 1.1 JGB

28th March 2014 Version 1.0 TN

27th March 2014 Version 0.94 TN

23rd March 2014 Version 0.93 TSS

13th March 2014 Version 0.92 BS

5th March 2014 Version 0.91 TSS

2014 Version 0.9 TSS

2014 Version 0.1 MSP

General Technical Specification, version 2.0

4/4 2013 Page 4 of 45

 ORIGIN parameter changed status from MANDATORY to

OPTIONAL

 LSS_SUPPORTMESSAGE removed from specification

 Unknown parameters should be silently ignored by LSS backends

 Updated support for browser caching prevention

 Introduced the https://lss-for-nemid-server-test.dk URL in TEST

 LSS errorhandling should be handled inside the LSS iframe by the

LSS backend and not by the service provider. Removed the

following errorcodes in this process: LSSAUTH002, LSSLCK001,

LSSLCK002

 Issuance of certificates added to the specification

1 Changes in version 2.0

https://lss-for-nemid-server-test.dk/

General Technical Specification, version 2.0

4/4 2013 Page 5 of 45

The purpose of the LSS for NemID service provider package is to

provide an integration between service providers (SP) and employees in

organizations, who have their NemID for business stored on a local

signature server (LSS), hosted on their enterprise LAN.

This makes it possible for employees in companies with the LSS, to use

NemID for business from JavaScript enabled devices such as tablets,

smartphones and ordinary computers.

This document provides the technical specification for the LSS for

NemID setup and provides the technical implementation reference for

service providers as well as for the technical staff in organizations

implementing an LSS for NemID backend.

The reader is assumed to be familiar with the general concepts of

NemID and NemID for Business as presented in the current service

provider package (TU-pakke) from NETS DanID [TU].

As of fall 2016 the LSS for NemID functionality is included in the

service provider package from NETS DanID.

2 Introduction

General Technical Specification, version 2.0

4/4 2013 Page 6 of 45

The purpose of the LSS for NemID is to provide the ability for employees

in organizations with LSS, to authenticate towards service providers and

to digitally sign documents in formats Text, HTML, XML and PDF.

To support this functionality, the service provider needs to setup and

handle communication with the users LSS back-end through an HTML

iframe using JavaScript.

The overall architecture is illustrated below.

MedarbejderMedarbejder

Browser

LSS til
NemID

API

LSS

Tjenesteudbyder

Figure 1: Overall architecture

3.1 LSS Client integration

The JavaScript LSS for NemID client (LSS Client) is integrated with the

service provider’s page, using an iframe element, which enables a web

page to allocate a segment of its area to another page. This differs from

the Java applet client, where a Java applet is loaded as a page element

and works like NemID JavaScript.

3 Solution architecture

General Technical Specification, version 2.0

4/4 2013 Page 7 of 45

Figure 2: The iframe

An iframe element has a fixed size, which requires allocation of sufficient

room for every possible screen size, when it is created.

The iframe element must be setup with a width of at least 200 pixels

and a height of at least 275 pixels, as illustrated in Figure 2. This is the

same minimum width as the NemID JS iframe in Limited Mode, but has

an increased height from 250 to 275 pixels.

For signing flows, it is recommended, that the LSS backend use the

entire allocated space inside the iframe element in a dynamic way, so

that the service provider can scale the frame to the screen size of the

user’s device.

Screen reader tools depend on the title attribute for describing iframes.

An appropriate title could be “LSS for NemID”.

3.2 Third-party cookies

When an iframe is setup with a source from a domain outside the

service provider's domain, any cookies exchanged through the frame are

considered third party cookies – and this setup is exactly that of NemID

for LSS when using the LSS Client.

General Technical Specification, version 2.0

4/4 2013 Page 8 of 45

The support for third party cookies is not guaranteed across available

browsers.

It is required that LSS suppliers implement their backend service

without the use of cookies to accommodate all browsers.

The HTML5 Web Storage API could be utilized to store client-side values

like the username.

Using cookie-less sessions could be utilized to provide a session-based

back-end without using cookies.

3.3 LSS Client URL

To enable the LSS Client, the service provider must setup an iframe

element using the LSS Client URL.

LSS Client URL PROD https://lss-for-nemid-server.dk/

LSS Client URL TEST https://lss-for-nemid-server-test.dk/

To prevent browser caching of the content inside the LSS Client iframe

one of the following strings is appended to the LSS Client URL:

 https://lss-for-nemid-server.dk/<random-digits>

 https://lss-for-nemid-server.dk/?t=random

The purpose of the random-digits or the random postfix of the URL is to

supply a random constantly changing number, such as system time in

milliseconds to prevent caching of resources in the client and should be

ignored by the LSS supplier. LSS suppliers must handle this form of the

request, but can assume that <random-digits> are a series of digits

without a trailing slash.

Example of valid URLs:

https://lss-for-nemid-server.dk/1395749519

https://lss-for-nemid-server-test.dk/?t=22333345223

Example of invalid URL’s:

General Technical Specification, version 2.0

4/4 2013 Page 9 of 45

https://lss-for-nemid-server.dk/1395749519/

https://lss-for-nemid-server.dk/aabbccdd

To ensure authenticity of the LSS servers towards clients the LSS Client

MUST be established over SSL/https.

For this solution to work, client browsers need to trust the certificate

used for the https connection.

To enable trust on the user-devices, the LSS-organization,

administrating the devices, MUST establish a custom trust Certificate

Authority (CA), or have their LSS supplier help them in this matter. This

CA will be used for issuing SSL-certificates for the endpoint.

If the user’s browser does not have the appropriate SSL-trust, the

iframe content is blocked by the browser and consequently the LSS

backend will not respond to the initialization.

3.3.1 LSS Client iframe attributes

This section describes LSS Client iframe attributes that will have a

profound effect on the user experience.

The SP should carefully consider how to set these attributes.

The allowfullscreen attribute

This attribute takes values true or false. When set to true, this attribute

will allow the iframe to display its contents in full screen mode.

It is recommended, that the value true is used for signing flows.

The scrolling attribute

This attribute takes values yes or no. When set to yes the user will be

able to scroll the contents within the iframe and the browser may or

may not use space for displaying scrollbars.

For that reason it is recommended that this attribute is set to no.

General Technical Specification, version 2.0

4/4 2013 Page 10 of 45

3.3.2 Hybrid app integration

Implementing a native application for a mobile platform (i.e. iOS,

Android, Windows etc.) based around a web container and web content

is often referred to as a hybrid app.

The LSS Client is a web based client only working through the HTML5

JavaScript based Web Messaging API. To integrate with the LSS Client

from a native application the application must be able to serve web

content, setup the LSS Client iframe and so forth and naturally makes

any app integrating with the API a hybrid app.

Creating a hybrid app that interacts with the LSS Client is done in the

same manner as from a regular web application and thus no additional

documentation is provided for the hybrid app scenario.

The LSS Client iframe must still be created and JavaScript enabled to

communicate with the LSS back-end through the LSS Client.

The iframe minimum size is still 200 * 275 pixels.

General Technical Specification, version 2.0

4/4 2013 Page 11 of 45

The general flow between the service provider and the LSS is illustrated

below.

Service Provider
backend

Service Provider
page

LSS Client LSS back-end

Generate and sign
Client parameters

Create hidden LSS
Client iframe

Ready client

Transmit
”LssClientReady”

message

Wait for
”LssClientReady”

message

Transmit
”BeginFlow”

message

Wait for ”BeginFlow” message.
Verify parameters

Verify user credentials
and generate response

Transmit ”ReceiveResult” message

Wait for
”ReceiveResult”

message

Transmit response
to server

Validate signed
response

Extract identity
and signature

from user

API layer

Show LSS Client
frame to user

Figure 3: General flow

The flow is initiated when the service provider decides which flow to

initiate – signing or logon – and generates the appropriate set of

4 Logon and signing flow

General Technical Specification, version 2.0

4/4 2013 Page 12 of 45

parameters (content to sign etc.) initializing that flow. Details of all API

invocations are given in Section 6.

The service provider then loads the LSS Client at the LSS Client URL.

When loaded properly, the LSS Client will send the LssClientReady

command to the service provider page.

When the service provider receives LssClientReady the command

verified. If found valid, the LSS Client iframe is made visible to the user,

i.e. the user is not able to interact with the LSS before the service

provider has received and accepted the LssClientReady command.

The LSS then awaits the BeginFlow command containing the

parameters, specifying the desired flow and content hereof.

When the LSS is done processing user input and has created either an

XML-DSig message or error code, the result is passed on to the service

provider page, using the ReceiveResult command.

4.1 Communication API

The API defining the communication channel between the service

provider and the LSS can thus be expressed by two interfaces, one

implemented by the service provider and one by the LSS Client:

a

void LssClientReady(…)

void ReceiveResult(…)

Service Provider interface

General Technical Specification, version 2.0

4/4 2013 Page 13 of 45

The following section will outline how these interfaces are implemented.

In Section 6 the method parameters illustrated by dots above are

detailed.

4.2 Initialization error handling

When the LSS is unreachable, the normal flow described above will fail

when the service provider page attempts to load the LSS Client.

The flow is sketched below:

void BeginFlow(…)

LSS Client interface

General Technical Specification, version 2.0

4/4 2013 Page 14 of 45

Service Provider
backend

Service Provider
page

Global LSS
Client

Generate Client
parameters

Create hidden LSS
Client iframe

Global LSS URL
resolved

Transmit
LSSGLB001 error

code to
ReceiveResult

Wait for
”LssClientReady”

message

API layer

Received
LSSGLB001
directly in

”ReceiveResult”

Display helpful
error message to

the user

Figure 4: Global flow

Since the user device is not on the company LAN, the DNS lookup for

lss-for-nemid-server.dk will resolve to the Global LSS Client or fail to

resolve entirely.

A Global LSS Client is setup to provide a fast indication to the client,

that the user is unable to locate a local LSS service.

The most common causes for a non-responding LSS backend are listed

here:

 Browser does not trust the SSL certificate used for the LSS

Client URL.

General Technical Specification, version 2.0

4/4 2013 Page 15 of 45

 Neither the global LSS address nor the LSS is available to the

user.

 Local LSS backend is irresponsive. This could be due to

network latency, firewalls or other malfunctions at the LSS

backend.

It is recommended, that the service provider implements some sort of

timeout functionality which will terminate the operation after a period,

and display a helpful message to the user.

General Technical Specification, version 2.0

4/4 2013 Page 16 of 45

In this section, it is described how the communication flows of the

previous section can be implemented.

5.1 Supported platforms

Both the service provider and the LSS supplier may choose technology

to fit their requirements. However, it is a requirement, that common and

standardized technology is chosen to ensure that a wide range of user

devices and platforms are supported.

Both the service provider and the LSS supplier MUST ensure support for

a specific set of browsers and platforms.

This set is listed at Nets-DanID. [SUB]

5.2 Web Messaging API

The communication between the service provider and the LSS-supplier

is implemented using the HTML5 Web Messaging API [WM], which is an

event-based JavaScript (JS) API and is widely supported by most

browsers and on most devices.

Within the messaging paradigm, all commands are executed by sending

a message. This is done asynchronously – note, that all methods in the

API are void.

Code snippets in this section are meant for illustration purposes alone,

and should not be used directly. For running code, please consult the

test-examples.

5 Implementation

General Technical Specification, version 2.0

4/4 2013 Page 17 of 45

5.3 Initialization

As a result of this architecture, both the service provider and the LSS

Client initialization JS code has the following structure:

function onMessage(e) {

 //authenticate and handle message

}

function registerMessageHandler() {

 if (window.addEventListener) {

 window.addEventListener("message", onMessage);

 } else if (window.attachEvent) {

 window.attachEvent("onmessage", onMessage);

 }

}

registerMessageHandler();

//Possibly do further initialization

Figure 5: Initialization

General Technical Specification, version 2.0

4/4 2013 Page 18 of 45

The onMessage method is the message handler, doing all handling of

incoming messages. This method will be discussed below.

The message handler is registered via both window.addEventListener

and window.attachEvent – the former being supported is most modern

browser, and the latter in IE5-8. In order to support IE8, registration via

attachEvent is required.

After registration, the event-handler (onMessage) will be executed

whenever the document receives a message from other documents

[WM].

General Technical Specification, version 2.0

4/4 2013 Page 19 of 45

5.4 Message handling

The structure of the message handler is:

On IE8, the occurred event is not passed as argument to onMessage,

therefore the var event = … statement is required to handle both

modern browsers and IE8.

Before handling any message, the message must be authenticated. This

occurs in the isMessageAuthentic method and is described in Section

5.6.

All messages consist of the command name, e.g. LssClientReady and a

content value defined by a JSON object mapping, containing parameter

name/value-pairs.

The message handling proceeds in method handleMessage as follows:

function onMessage(e) {

 var event = e || event;

 if (isMessageAuthentic(event)) {

 var message = JSON.parse(event.data);

 handleMessage(message);

 } else {

 //Log unauthentic message information

 }

}

Figure 6: OnMessage

General Technical Specification, version 2.0

4/4 2013 Page 20 of 45

The message.command is inspected for a supported command name,

and the content is interpreted as a JSON structure, which is then

handled appropriately.

5.5 Sending messages

When either party needs to send a message to the other, it is done as

follows:

function handleMessage(message) {

 if (message.command === "SomeCommand") {

 var content = JSON.parse(message.content);

 executeSomeCommand(content);

 }

 if (message.command === "OtherCommand") {

 //Execute other command

 }

}

Figure 7: HandleMessage method

General Technical Specification, version 2.0

4/4 2013 Page 21 of 45

Here the content should be a JSON formatted string, such as

{ "KEY1" : "value1", "SECOND_KEY" : "val" }

function sendMessage(command, content) {

 var message = {};

 message.command = command;

 message.content = content;

 var recipient = getRecipient();

 var recipientLocation = getRecipientLocation();

 recipient.postMessage(

JSON.stringify(message),

recipientLocation

);

}

Figure 8: Send message

General Technical Specification, version 2.0

4/4 2013 Page 22 of 45

and the getRecipient() and getRecipientLocation() methods have

different implementations in the service provider page and the LSS

Client:

Thus, the LSS Client will send messages to its parent whereas the

service provider page needs to identify the iframe DOM element as

recipient.

5.6 Message authentication

To ensure that only messages from the expected source are received

and processed, an authentication mechanism based on an origin check

is made on the received messages.

This is done by means of the following code:

function getRecipient() {

 //LSS Client implementation:

 return parent;

 //Service provider implementation:

 return document.getElementById("moceslss_iframe").contentWindow;

}

function getRecipientLocation() {

 //LSS Client implementation:

 return "*";

 //Service provider implementation:

 return "https://lss-for-nemid-server.dk";

}

General Technical Specification, version 2.0

4/4 2013 Page 23 of 45

Authenticating the LSS Client is simple: All messages must come from

the LSS Client URL.

Authenticating the service provider is a bit more complicated, since it

involves inspecting the message contents parameter ORIGIN, and

comparing it to the event origin. See Section 6.2.2 for details. Note, that

the implementation in Figure 9 does not handle case-insensitivity of

parameter names correctly.

If the received event message is not sent from the configured address,

it could mean that an attacker is attempting to inject code into the SP

flow. In that case, the flow should be stopped. The service provider

decides how this is displayed to the user.

Further, it is recommended to error-log the event server-side along with

the erroneous origin URL.

5.7 Service provider implementation

The service provider's handleMessage implementation would be

structured along the following lines:

function isMessageAuthentic(event) {

 //Service provider implementation:

 return event.origin == "https://lss-for-nemid-server.dk";

 //LSS Client pseudo-implementation:

 var message = JSON.parse(event.data);

 var content = JSON.parse(message.content);

 return event.origin == content.ORIGIN;

}

Figure 9: Message authentication

General Technical Specification, version 2.0

4/4 2013 Page 24 of 45

When receiving the LssClientReady command, the flow parameters are

immediately sent to the LSS Client.

The parameters generated by the service provider are set up in a script

tag on the service provider’s page:

function handleMessage(message) {

 if (message.command === "LssClientReady") {

 //Log or save LSS information from message.content.

 var parameters = document.getElementById("flowParams").innerHtml;

 sendMessage("BeginFlow", parameters);

 }

 if (message.command === "ReceiveResult") {

 var result = JSON.parse(message.content);

 //Handle error depending on result.STATUS

 document.postBackForm.response.value = result.SIGNATURE;

 document.postBackForm.submit();

 }

}

}

General Technical Specification, version 2.0

4/4 2013 Page 25 of 45

Since an unknown script-type is defined the browser will not process the

script.

When the result of the flow-operation is received – command

ReceiveResult – the XML-DSig message is inserted into a form and

posted to the service provider backend for validation.

We refer to the TU example demo applications for complete running

code.

5.8 LSS implementation

The LSS implementation is similar. However, when the message handler

is registered, the initialization code finishes by sending the

LssClientReady, to have the service provider start the flow:

<script type="text/x-nemidlss" id="flowParams">

{

 "SP_CERT":"MIIFij..==",

 "CLIENTFLOW":"login",

 "TIMESTAMP":"MjAxNC0wMS0yOCAxNDowNDozOSswMTowMA==",

 "REQUESTISSUER":"VFUgRXhhbXBsZQ==",

 "LANGUAGE":"da",

 "PARAMS_DIGEST":"R35g6+zBu1eXkn+6GXdZFwL/nBnOas8TV3Ewceo8Iyc=",

 "DIGEST_SIGNATURE":"jW6GgqyhO..=="

}

</script>

Figure 10: Flow parameters

General Technical Specification, version 2.0

4/4 2013 Page 26 of 45

The LSS handleMessage implementation only has a single command to

handle:

...

registerMessageHandler();

var clientReady = '{

 "API_VERSION" : "1.1.0.0",

 "LSS_SUPPLIER_ID" : "LSS-demo-provider",

 "LSS_INSTALLATION_ID" : "Demo",

 "LSS_VERSION" : "9.2.0.0"

 }';

sendMessage("LssClientReady", clientReady);

function handleMessage(message) {

 if (message.command === "BeginFlow") {

 //Begin the signing or logon flow, communicate with LSS backend

 }

}

General Technical Specification, version 2.0

4/4 2013 Page 27 of 45

When the user has selected certificate and a signature has been created

in the LSS backend, the LSS Client will send the result to the service

provider by using the Web Messaging API as shown in Figure 8.

Again we refer to the examples for complete running code.

5.9 LSS Client presentation to user

The service provider should await the LssClientReady command and not

show the LSS Client to the user prior to this. By receiving this command,

the service provider is made aware that the user has access to an LSS

backend.

General Technical Specification, version 2.0

4/4 2013 Page 28 of 45

The JavaScript messages in the API sent between the LSS supplier and

service provider are passed on as a JSON object – see Figure 10 for an

example.

Each parameter is defined as a name-value pair. Both name and value

are strings. The value may or may not be encoded using Base64.

The ordering of the parameters within the JSON structure holds no

significance.

Although parameter names are presented in the sections below in upper

case, they must be interpreted as case-insensitive. Examples can be

found in the supplied demo applications on how to handle the case-

insensitivity.

All parameter values are represented as strings. They may be Base64

encoded. Encoding is specified explicitly in tables below.

A Base64 encoded value should be interpreted as either a string or

binary, as specified in the Type column in tables below.

Strings are UTF-8 encoded throughout. Note, that special care must be

taken, if UTF-8 encoding/decoding is done in JavaScript.

Some values are case-insensitive. In that case, this will be explicitly

stated in the description of the parameter.

Parameters may be mandatory in all flows (M), mandatory in signing

flows (MS), optional (O), or optional in any signing flow (OS). These

values are specified in Required columns in tables below.

The set of parameters and their respective allowed name-value-pairs

form the API. The current version of the API is reflected in the

API_Version parameter in this section.

Current version of the API is 1.1.0.0.

6.1 The LssClientReady command

The following parameters form the LssClientReady command:

6 API specification

General Technical Specification, version 2.0

4/4 2013 Page 29 of 45

Name Required Encoding Type

API_VERSION M None string

LSS_SUPPLIER_ID M base64 string

LSS_INSTALLATION_ID M base64 string

LSS_VERSION M None string

PDF_SUPPORTED O None string

6.1.1 API_VERSION

This parameter gives the version of the implemented API.

Service providers may use this to determine the version of the LSS

supplier's implementation.

For this version of the API, the value must be 1.1.0.0.

6.1.2 LSS_SUPPLIER_ID

This parameter uniquely identifies the LSS supplier.

Service providers may use this e.g. for logging purposes.

6.1.3 LSS_INSTALLATION_ID

This parameter identifies the LSS installation at hand. The LSS could

e.g. supply the name of the users organization here.

Service providers may use this for logging purposes.

6.1.4 LSS_VERSION

This parameter gives the version of the LSS installation.

By inspecting this value, the service provider would be able to prevent

usage of a specific version of the LSS, e.g. if a severe bug has been

detected.

General Technical Specification, version 2.0

4/4 2013 Page 30 of 45

The value must take the form x.y.z.v where x, y, z, and v are integer

numbers. Version numbers should be comparable.

6.1.5 PDF_SUPPORTED

This optional value specifies whether PDF-signing is supported by the

LSS at hand.

The value should be either true (default) or false (case-insensitive).

6.2 The BeginFlow command

The following parameters form the BeginFlow command.

Name Required Encoding Type

CLIENTFLOW M none string

ORIGIN O base64 string

ADDITIONAL_PARAMS O base64 string

ADDITIONAL_PARAMS_CRITICAL O base64 string

LANGUAGE O none string

TIMESTAMP M base64 string

REQUESTISSUER M base64 string

SIGN_PROPERTIES O none string

SIGNTEXT MS base64 string

or

binary

General Technical Specification, version 2.0

4/4 2013 Page 31 of 45

SIGNTEXT_FORMAT MS none string

SIGNTEXT_MONOSPACEFONT OS none string

SIGNTEXT_TRANSFORMATION OS base64 string

SIGNTEXT_TRANSFORMATION_ID OS none string

SP_CERT M base64 binary

PARAMS_DIGEST M base64 binary

DIGEST_SIGNATURE M base64 binary

6.2.1 CLIENTFLOW

This parameter defines the flow-type. Value must be either login or sign.

Value is case-insensitive.

6.2.2 ORIGIN

This parameter gives the URL of the service provider domain. The URL

must have the form https://<hostname>:<port>, where <hostname>

gives the fully qualified domain name of the page.

The <port> part must only be defined, if the service provider service is

not using standard port-numbers.

The URL must not contain any path info and must not have any trailing

slashes.

Examples:

https://serviceprovider.dk - allowed

https://serviceprovider.dk:9443 - allowed

https://another.provider.dk:443 - not allowed

https://serviceprovider.dk/ - not allowed

https://serviceprovider.dk/
https://serviceprovider.dk/
https://another.provider.dk/
https://serviceprovider.dk/

General Technical Specification, version 2.0

4/4 2013 Page 32 of 45

https://serviceprovider.dk/logonpage - not allowed.

When authenticating the command, the LSS backend must compare the

value of this parameter to the event.origin – see Section 5.6. If the

values don't agree, the LSS must return error APP001.

Note, that the benefit of this authentication mechanism stems alone

from the fact, that the parameters are signed.

6.2.3 ADDITIONAL_PARAMS

This parameter contains a semi-colon separated list of named values.

E.g.:

property1=value1;property2=value2;lastKey=value3

This allows LSS suppliers to support custom functionality not directly

supported by the API.

The LSS should ignore parameters not known to it – unless marked

critical, see the following section.

6.2.4 ADDITIONAL_PARAMS_CRITICAL

This parameter contains a semi-colon separated list of names from the

ADDITIONAL_PARAMS name-value list.

E.g.:

property2;lastKey

All parameters in the list must match a parameter name in

ADDITIONAL_PARAMS.

These parameters must be handled as critical by the LSS, i.e. the LSS

must return error code "LSSADP001" if a critical parameter is either

unknown or cannot be handled.

https://serviceprovider.dk/logonpage

General Technical Specification, version 2.0

4/4 2013 Page 33 of 45

6.2.5 LANGUAGE

The parameter specifies the client language. Value must be either da or

en (case insensitive) to specify Danish and English, respectively, as the

client language.

If not provided, language is assumed to be Danish.

6.2.6 TIMESTAMP

This parameter expresses current time when generating parameters.

LSS implementation must reject messages older than 3 minutes.

The timestamp must be supplied as the number of milliseconds since

1970-01-01 00:00:00 or as a formatted string.

Examples:

2013-12-17 13:33:47+0100

1395819294069

The formatted string may be obtained by using the following format-

strings:

yyyy-MM-dd HH:mm:ssZ - Java

yyyy-MM-dd HH:mm:sszzz - .Net

6.2.7 REQUESTISSUER

The service provider "Friendly Name" presented to users in logon flows.

This parameter will be part of the resulting XML-DSig message.

The LSS-implementation must show this value to the user in logon

flows.

The LSS-implementation must display this value as clear-text and must

carefully escape any dynamic content.

The service provider must use the value ("Friendly Name") agreed upon

in their current service agreement with Nets DanID.

General Technical Specification, version 2.0

4/4 2013 Page 34 of 45

6.2.8 SIGN_PROPERTIES

The value of this parameter must be XML formatted XML-DSig

SignatureProperty elements. The elements will be included in the

resulting XML-DSig message.

We refer to the general service provider documentation [TU] for details

on how to format this parameter.

6.2.9 SIGNTEXT

The actual text signed by the user in signing flows. The form of the text

is given by the SIGNTEXT_FORMAT parameter – see below.

When SIGNTEXT_FORMAT text, xml, or html is specified the value must

be interpreted as a string.

When SIGNTEXT_FORMAT pdf is specified the value must be interpreted

as binary.

6.2.10 SIGNTEXT_FORMAT

This parameter specifies the format of the SIGNTEXT parameter.

The case-insensitive value must be one of

 text

 html

 xml

 pdf

6.2.11 SIGNTEXT_MONOSPACEFONT

When given value true (case-insensitive) this parameter indicates that

plain text should be rendered with a mono-spaced font to allow for

indention based formatting. Further, no word wrapping is allowed.

The parameter has no effect unless the SIGNTEXT_FORMAT is specified

as text.

When this parameter is not present – or has any value other than true –

plain text is rendered using the default font.

General Technical Specification, version 2.0

4/4 2013 Page 35 of 45

6.2.12 SIGNTEXT_TRANSFORMATION

The value of this parameter must be an XSLT style sheet. The style

sheet is used to transform the XML passed in parameter SIGNTEXT into

an HTML document, which is displayed to the user for signing.

This parameter is mandatory if SIGNTEXT_FORMAT is xml.

6.2.13 SIGNTEXT_TRANSFORMATION_ID

This parameter specified an optional identifying string for the style sheet

defined in SIGNTEXT_TRANSFORMATION. The parameter will be part of

the resulting XML-DSig message.

If a service provider uses several different style sheets, this identifier

provide a means to assess which style sheet was applied – note that

SIGNTEXT_TRANSFORMATION is not part of the resulting XML-DSig

message.

The parameter has no meaning unless in an XML signing flow.

6.2.14 SP_CERT

This parameter gives a DER representation of the certificate used for

signing the parameters.

The certificate must belong to the service provider and must be issued

by a Nets-DanID trusted Certificate Authority.

The LSS implementation must validate this certificate to make sure, that

the BeginFlow command is authentic.

6.2.15 PARAMS_DIGEST

The parameter value is a SHA-256 digest of the normalized parameters.

See section 7 for detailed documentation of the normalization and

signing procedure.

6.2.16 DIGEST_SIGNATURE

This parameter gives an RSA-SHA256 signature computed on the

PARAMS_DIGEST.

See section 7 for detailed documentation of the normalization and

signing procedure.

General Technical Specification, version 2.0

4/4 2013 Page 36 of 45

6.3 The ReceiveResult command

This section specified parameters used in the ReceiveResult command.

Name Required Encoding Type

STATUS M none string

STATUS_TEXT O base64 string

SIGNATURE O base64 string

6.3.1 STATUS

The parameter gives the overall status of the sign/logon operation.

See Section 9 for possible status codes.

6.3.2 STATUS_TEXT

When defined, this parameter gives a detailed technical description of

the error that occurred.

The text may be used for logging and further error handling by the

service provider. The service provider may assume that the value is

clear-text without any special formatting.

Due to its technical nature, this parameter value should never be

displayed to users.

Note, that this parameter is mandatory if STATUS is LSSERR001.

6.3.3 SIGNATURE

If the sign/logon flow is successful, this parameter contains the XML-

DSig message signed by the user.

This parameter is mandatory if STATUS is LSS000.

The XML-DSig message must use the same format as existing NemID

variants and as a minimum OOAPI must be able to validate the message

and extract the required information from it.

General Technical Specification, version 2.0

4/4 2013 Page 37 of 45

A detailed specification of the XML-DSig message is given in the

document “LSS Technical specification”.

This means, that the service provider could (and should) handle the

XML-DSig message in the exact same way, regardless of the NemID

variant chosen by the user.

Validation of the XML-DSig message could be done using the OOAPI

package – or other available validation implementations - and is

described in DanID’s service provider package. [TU]

7 Parameter validation

The LSS-implementation must validate all received parameters.

New in version 2.0 is the requirement, that the implementation must

ignore unknown parameters silently. The signature validation must be

processed as before, but new or unknown parameters should not cause

errors.

The service provider is required to supply a valid signature on the

parameters, along with their certificate, as described in the following

section.

This signature must be validated by the LSS-implementation. The LSS

must verify that

 the parameter signature is valid

 the signing certificate is valid temporally

 the signing certificate is not revoked

 The signing certificate is issued by a trusted party – usually

DanID.

The mandatory TIMESTAMP parameter (Section 6.2.6) must be

validated, and no requests older than three minutes should be accepted.

Validating the signature and the time stamp enables the LSS-supplier to

log a cryptographic proof that the given service provider requested the

specific service at the given time.

7.1 Parameter signature

To ensure the integrity of the parameters in transit between the service

provider and the LSS backend, they must be signed by the service

provider.

General Technical Specification, version 2.0

4/4 2013 Page 38 of 45

The process for signing the parameters is:

1. The service provider collects the list of parameters. The list is

normalized (see Section 7.2) into a string, and the SHA-256

digest value of the string’s UTF-8 representation is calculated.

2. The normalized string is signed. The signature is performed

using the VOCES certificate, which is associated with the service

provider's service agreement with Nets DanID. The signature

algorithm to be used is RSA SHA-256.

3. The Base64-encoded value of the digest and the signature are

added as the parameters PARAMS_DIGEST and

DIGEST_SIGNATURE, respectively.

4. All parameters are collected in a JSON-message and sent to the

LSS-supplier.

5. The LSS-supplier reads the parameters and normalizes them,

excluding the digest value and the signature parameters. The

digest value is verified by comparing the calculated digest with

the supplied.

6. The LSS-supplier verifies the signature using the certificate of

the service provider, supplied in the SP_CERT parameter. The

certificate must be a VOCES or FOCES issued by DanID.

7.2 Parameter normalization

The digest of the LSS Client parameters is calculated on a normalized

version of the parameters.

The process for normalizing the parameters is:

1. The parameters are sorted alphabetically by name. The sorting

is case-insensitive. This means that all characters be converted

to lowercase before sorting.

2. Each parameter is concatenated to the result string as an

alternating sequence of name and value: name1 || value1 ||

name2 || value2 || … || namen || valuen. The names must be as

passed to the LSS and not in the lowercase representation used

in the first step.

3. Finally, the concatenated string is encoded using UTF-8, and the

digest is computed on the resulting bytes.

General Technical Specification, version 2.0

4/4 2013 Page 39 of 45

8 Signing PDF documents

The support for signing is the same as supported by the other NemID

solutions. Consult the current service provider package (TU-pakke) from

Nets DanID for general documentation on the supported signing types

and validation.

The exception is the support for the PDF signing flow. In the current

version, the LSS backend support for this is optional and is flagged in

the PDF_SUPPORTED parameter.

If a signing operation is unsuccessful, an error code is returned to the

service provider. The error code is provided to the service provider

base64 encoded. Section Error! Reference source not found.

contains a list of the error codes, which a service provider may receive

from a signing operation.

General Technical Specification, version 2.0

4/4 2013 Page 40 of 45

If the flow is completed successfully, the status code LSS000 is

returned.

In the event of an error, a status code is received indicating what went

wrong. In addition to the status code, an optional text may be returned

to the service provider in the STATUS_TEXT parameter.

9.1 General status codes

These status codes are general to the client functionality and may be

received, regardless of which operation the client was supposed to do.

Status code Cause of error

APP001 The client calculated the digest of its parameters, and it did not match

the digest that was submitted in the PARAMS_DIGEST parameter.

APP007 Returned by the client if a mandatory parameter is missing.

APP008 Returned by the client if an invalid combination of parameters has

been received.

CAN002 The user chose to cancel the operation by pressing the cancel button.

This error is not transmitted if the user navigates away from the page

containing the client, e.g. by closing the browser window or clicking a

link.

SRV006 The server lost the session it had established with the client. This may

occur, if the user leaves the client open for a prolonged stretch of time

without interaction.

SRV003 The time stamp of the authentication request was not within the

allowed time span.

9.2 Signing status codes

Status code Cause of error

APP002 The sign text was illegal, e.g. the HTML document contained illegal

tags or the PDF document did not match its hash.

9 Status codes

General Technical Specification, version 2.0

4/4 2013 Page 41 of 45

9.3 LSS specific status codes

The following codes may be returned during LSS operations.

Status code Status code interpretation

LSS000 This code is used to signal success.

LSSERR001 When this code is returned an unspecified error occurred.

LSSPDF001 The LSS back-end does not support PDF signing.

LSSAUTH001 The user is not able to authenticate.

LSSSRV001 The signature on the client parameters could not be verified.

LSSGLB001 This error must not be returned by any LSS-supplier, but is reserved

for use from the global LSS Client.

LSSJSN001 Error parsing JSON object

LSSADP001 ADDITIONAL_PARAMS not supported.

Is used when the LSS receives an ADDITIONAL_PARAMS parameter

containing one or more unsupported keys or values which is marked as

critical in “ADDITIONAL_PARAMS_CRITICAL”.

9.4 Status code handling

All the general status codes are shared with the general service provider package

and should be handled in the same manner as in that context.

It is required that the LSS back-end communicates success or error through one of

the defined status codes to the service provider through the LSS Client. All errors

occurring at the LSS back-end will be communicated through the API.

Unhandled JavaScript errors might cause the flow and communication to stop. The

LSS back-end is required to ensure that JavaScript errors are caught and a status

code is sent to the service provider if unable to complete the flow. Simple try-catch

clauses could provide a similar mechanism for the service provider but has been

omitted from the examples in order to simplify the example code.

It is demonstrated in the code examples found in the LSS for NemID SP package

how to send and receive the status codes. The service provider examples provide a

mechanism to convert error codes into text messages explaining the user of the

problem.

It is considered best practice to populate a form with the status code along with

other received parameters in JavaScript when received through the Web Messaging

API and then post these to a web-page handling the success/error scenario as

demonstrated in the demo examples.

General Technical Specification, version 2.0

4/4 2013 Page 42 of 45

The following table specifies how the service provider should handle the LSS

specific status codes

Status code Service provider action

LSS000 Proceed to normal flow handling the result

LSSERR001 The user encountered a problem with the LSS flow. The error is

unknown to the service provider.

LSSPDF001 The LSS backend does not support PDF signing. The service

provider must offer the user to sign in a different format

LSSAUTH001 The user encountered a problem with the LSS flow, but has

been notified about errors inside the LSS iframe.

LSSSRV001 The service provider should check if the used VOCES is still

valid. If it is valid the service provider should review his code

generating the signature on the parameters

LSSGLB001 The service provider should tell the user to connect to his

enterprise LAN as this status code indicates that he is not

connected

LSSJSN001 The status code indicates that the service provider has a

programming error which he should fix

LSSADP001 The code indicates that the LSS backend does not understand

the additional parameters given. The service provider should

terminate the flow telling the user that his organization is non-

compliant with the flow

General Technical Specification, version 2.0

4/4 2013 Page 43 of 45

As of version 1.1.0.0 of the API specification LSS implementations must support

issuing of certificates.

The issuance page at Nets DanID will attempt to detect if a LSS implementation is

present on the user network. If not the process will proceed as usual. If a LSS

implementation is detected and the API version equal or above 1.1.0.0 the

employee will be redirected to the LSS issuance page.

LSS implementations must respond to the following URLs

- https://lss-for-nemid-server.dk/enroll/

- https://lss-for-nemid-server.dk/enroll/<cvr>/<reference-number>

where CVR refers to the company registration number of the employee in question.

Reference number refers to the reference number given by Nets DanID, when the

LRA orders a new NemID for business. If the first URL variant is used the employee

must by prompted for those values

On the LSS issuance page the employee must be prompted for the issuance PIN

provided by Nets DanID by either mail or through the LRA interface (immediate

issuance)

The LSS vendor may prompt the user for any other additional information,

necessary for associating the certificate with an employee, during the issuance

process.

10 Issuing certificates

https://lss-for-nemid-server.dk/enroll/
https://lss-for-nemid-server.dk/enroll/%3ccvr%3e/%3creference-number

General Technical Specification, version 2.0

4/4 2013 Page 44 of 45

Following a list of URL’s which provide a recommended read during

development and integration with the LSS Client and LSS back-end. The

info is relevant for both service providers and LSS suppliers.

OWASP HTML5 Security Cheat Sheet:

https://www.owasp.org/index.php/HTML5_Security_Cheat_Sheet

11 Recommended security reading

https://www.owasp.org/index.php/HTML5_Security_Cheat_Sheet

General Technical Specification, version 2.0

4/4 2013 Page 45 of 45

[TU] DanID TU-pakke

https://www.nets-danid.dk/tu-pakke

[XMLDSIG] XML Signature Syntax and Processing (Second Edition)

http://www.w3.org/TR/xmldsig-core/

[XMLENC] XML Encryption Syntax and Processing

http://www.w3.org/TR/xmlenc-core/

[RFC 4051] Additional XML Security Uniform Resource Identifiers (URIs)

http://www.ietf.org/rfc/rfc4051.txt

[PKCS1] PKCS #1: RSA Cryptography Specifications 2.0

http://tools.ietf.org/html/rfc2437#page-13

[SUB] Description of internet browsers and OS platforms that must be

supported.

https://www.nets-danid.dk/kundeservice/krav_til_computer/internetbrowser/index.html

[WM] HTML5 Web Messaging

http://www.w3.org/TR/webmessaging/

[JSON] JavaScript Object Notation

http://www.ietf.org/rfc/rfc4627.txt

http://www.json.org/

[SOP] Same Origin Policy

http://en.wikipedia.org/wiki/Same_origin_policy

[CORS] Cross-origin Resource Sharing

http://en.wikipedia.org/wiki/Cross-origin_resource_sharing

[XDRO]

XDomainRequest object

http://msdn.microsoft.com/en-

us/library/ie/cc288060(v=vs.85).aspx

http://blogs.msdn.com/b/ieinternals/archive/2010/05/13/xdomai

nrequest-restrictions-limitations-and-workarounds.aspx

12 References

https://www.nets-danid.dk/
http://www.w3.org/TR/xmlenc-core/
http://www.ietf.org/rfc/rfc4051.txt
http://tools.ietf.org/html/rfc2437#page-13
https://www.nets-danid.dk/kundeservice/krav_til_computer/internetbrowser/index.html
http://www.w3.org/TR/webmessaging/
http://www.json.org/
http://en.wikipedia.org/wiki/Same_origin_policy
http://en.wikipedia.org/wiki/Cross-origin_resource_sharing

